- 1. Two infinite parallel plates, separated by a distance s, are at $\Phi = 0$ and Φ_0 respectively. (a) Use Poisson's equation to find the potential in the region between the plates where the space charge density is $\rho(x) = \rho_0 x/s$. The distance x is measured from the plate at zero potential.
 - (b) Find the surface charge densities on the plates.
- 2. (a) Two coaxial conducting cylinders, of radii a and b (b > a) and length L ($L \gg b$), carry equal and opposite charges -Q and Q. Find the capacitance of this configuration.

(b) Find the electrostatic energy of the configuration by integrating over the distribution. Express your answer in terms of Q and $\Delta \Phi$.

- 3. Consider the electrostatic Green's function on the surface bounding the volume V. Using the Green's theorem with integration variables \vec{y} and $\varphi = G(\vec{x'}, \vec{y})$, with $\vec{\nabla}_y^2 G(\vec{z}, \vec{y}) = -4\pi\delta(\vec{y} - \vec{z})$, find an expression for the difference $[G(\vec{x}, \vec{x'}) - G(\vec{x'}, \vec{x})]$ in terms of an integral over the surface S.
- 4. A point charge q is brought to a position a distance d away from an infinite plane conductor held at zero potential. Using the method of images,
 - (a) verify that the total charge induced on the plane is equal to -q;
 - (b) determine the total force acting on the plane by integrating $\sigma^2/2\epsilon_0$;

(c) determine the work necessary to remove the charge q from its position to infinity using $\int \vec{F} \bullet d\vec{\ell}$;

(d) determine the potential energy between the charge q and its image if there was no conducting plane present. Compare the results with part (c) and explain your result.

5. (a) Show that the electrostatic potential at \vec{x} due to a dipole \vec{p} at the origin is

$$\Phi(\vec{x}) = \frac{1}{4\pi\epsilon_0} \, \frac{\vec{p} \bullet \vec{x}}{|\vec{x}|^3}$$

(b) Using $\vec{E} = -\vec{\nabla}\Phi$, show that

$$\vec{\boldsymbol{E}} = \frac{1}{4\pi\epsilon_0} \, \frac{3\vec{\boldsymbol{x}}(\vec{\boldsymbol{x}} \bullet \vec{\boldsymbol{p}}) - \vec{\boldsymbol{p}}r^2}{r^5}$$

(c) If $\vec{p} = p \, \hat{k}$, find E_r , E_{θ} , and E_{ϕ} .